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Interaction between Hopf and static instabilities in a pattern-forming optical system
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Optical pattern formation in a spin-1/2 atomic system is theoretically studied in the situation of interaction
between the Hopf and static instabilities. Variation of the parameters of the system permits a drastic change of
the ratio between the spatial wave numbers of the Hopf and the static modes. If the mode coupling satisfies
spatiotemporal phase matching conditions, regular patterns in the form of triadic Hopf-static patterns or oscil-
lating patterns with hexagonal symmetfywinking hexagons™) are formed. Otherwise, the simultaneous
excitement of the Hopf and static modes leads to the development of spatiotemporal turbulence that is in
agreement with results obtained in other systi8$063-651X98)10504-4

PACS numbg(s): 05.45:+b, 47.54+r, 42.65.Sf, 82.40.Bj

I. INTRODUCTION proved to be very suitable to study optical pattern formation
experimentally and theoretically due to its versatility,15—

In pattern-forming systems, several modes of differentl8]. In this paper attention is paid to the spatiotemporal pat-
frequency and/or different modulus of wave vectors may siterns which arise due to the interaction between Hopf and
multaneously be active. In a rotational symmetric two-Static modes. The suitable adjustment of the control param-
dimensional system there is in addition a degeneracy beeters of the system—such as the external magnetic field and
tween all modes having wave vectors of the same modulushe frequency detuning between the incident light and the
i.e., forming a circle in Fourier space. We will call such a setatomic transition—allows us to choose whether the Hopf or
of modes a “family” in the following. A resulting pattern the static modes lie on the outéar inney circle of Fig. 1.
will strongly be influenced by the development and interac-This totally alters the phase matching conditions and thus the
tion of modes of different families. In particular, resonantallowed interactions between the two mode families. We are
mode interaction permits us to explain pattern selection angiot aware of any nonoptical system which allows such an
metamorphoses in the Taylor-Dean sysidr in Rayleigh-  €asy exchange of the relative length scales of the two kinds
Bénard convection of binary mixturd®], and in the Bruss- Of instabilities.
elator mode[3]. It has also been shown that stationary two- Numerical simulations permit us to conclude that regular
dimensional2D) quasicrystals may be stabilized by a triadic Spatiotemporal structuredriadic Hopf-static patterns and
coupling between modes from different familigs-7). winking hexagongexist when the mode coupling satisfies a

The excitation of several families of spatial modeans-  phase matching condition and that spatiotemporal turbulence
verse to the direction of light propagatiois a striking ge- develops in the opposite case. It should be noted that the
neric feature of many pattern-forming nonlinear optical sys4atter result matches the findings obtained for other, espe-
tems[7—11]. This is due to the properties of the diffraction cially reaction-diffusion type, systems under conditions of
operator which provides spatial transverse coupling withirthe simultaneous development of Hopf and Turing modes
the propagating light beam and is the origin of the spatial19—23.
instability. Therefore nonlinear optical systems can be con-
sidered to be particularly suitable to study pattern-forming 1. MODEL AND STABILITY OF HOMOGENEOUS
processes involving modes from several families. It has re- SOLUTION
cently been shown that—in addition to stationary structures . ] ]
[7,10,11—nonstationary patterns named triadic Hopf-static_ 1he model we are going to analyze was introduced in
patterns[12] and winking hexagon$13] occur in optical Ref_s.[15, 16 to descr!be the experimental observation (_)f
systems with a wide aperture feedback. The nonstationarit§tationary patterns. It is based on the quantum mechanical
is caused by the circumstance that one of the unstable mo@$luation of motion for the Bloch vectan=(u,v,w) de-
families (schematically shown by; in Fig. 1) originates scribing the dynamics of the magnetization in the sodium
from a Hopf type of instability whereas the famity is due ~ ground statg15,14:
to a static instability. It is clear from Fig. 1 that a spatiotem-

poral phase matching condition is fulfilled if the mode has gm=—(y—DA, +P)m-mQ+eP (1)
the Hopf frequency) and thek, mode the frequency- ) ) i ) )
and ifk; +k,=q;. and the classical paraxial wave equation for the light propa-

We consider a single-feedback-mirror systé@] with gation[$,9]. In I_Eq.(_l), v is the collision induced relaxation
spin-1/2 atomgmodeling, e.g., sodium atoms in a buffer gas©f M, D is the diffusion constanty, is the transverse part of
atmosphere of high pressuf&4]) in an external magnetic the LaplacianpP denotes the optical pump rate. The vector
field as a nonlinear medium. This combination alreadyQ=((,,0,—AP) is an effective torgue vect¢i 4] which
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with Pg=Po{1+ R|exd —iklx;,(1—w)/2]|%}. Here P, de-
notes the pump rate introduced by the forward bedty (
~|Eo|?) which is referred to as a control parameter.

A linear stability analysis with respect to a spatially inho-
mogeneous perturbation proportional to epp(ik, -r))
yields a cubic equation for the growth exponent

FIG. 1. Schematic diagram illustrating the resonant coupling of 3 5
modes from two different families. 7t+ayn taintag=0, (8)

is composed not only from the Larmor frequencieg and  with the coefficients; given in the Appendix. A bifurcation
Q, of the external magnetic field components, but it contaings referred to as stationary if there are real rogtslarger

the light intensity dependent terdP originating from the  than zero. In the case of a pair of complex conjugated roots
light shift (18], and references thereinA is the detuning With positive Reg) we deal with a Hopf bifurcation. The
between the incident field and the atomic transition, normal€ondition of the Hopf bifurcation is determined by the coef-
ized to the relaxation constafi, of the polarization of the ~ficients of Eq.(8): a>0 anda;a,—a,<0. , ,
medium. The pump rat® is taken to be proportional to the It is instructive to note here that, since the diffractive

sum of the intensities of the forwardEg) and the backward COUPIiNg is determined by the operator exidA, /k) in Eq.
(E,) waves: (3), the coefficientsa; depend on the diffraction parameter

dkf/k acting as the argument of the trigonometric sine and
cosine functions. Obviously, extremal values for the coeffi-

— 2 2 2 2 A2
P=(|Bol™+ |Bol Dl el 142 7T (A% 1), @ cientsa; are achieved for sik{¢/k)=+1, or
The backward field is given by
di (1 o
Ep=JRe93 kg, ® Kol ©

whereE;=E, exp(—ixkl/2) is the transmitted fieldy is the

susceptibility of the sodium vapok, is the wave number of . . . — .
light in vacuum,| is the length of nonlinear mediumThe important in the case of a large detuning paramatgrhis

exponential factor stands for the formal solution of thecircur_nstance has already been noted in the ee}rliest study of
) : the single-feedback-mirror modg8] and can be interpreted

Srom the viewpoint of the Talbot effe¢24]. Even values of

m correspond to a self-focusing situation, i.e., the refractive

index

wherem is integer.(The influence of the cosine term is not

space of lengthd between the cell and the mirror with re-
flection coefficientR.
The susceptibility is coupled to the longitudinal compo-
nent of the orientation of the sodium ground statem,
through[14] NIPRE
n(P)=1— |Me|

— [1-w(P)] (10
_ At e, A2+
N|umel2 A+i o241

2heol's A2+ 1

X=- (1=wW)=xjin(1—w), 4
increases for increasing pump rate, while odd valuesof
correspond to a self-defocusing situation. This difference in
whereN is the sodium particle density. length scale selection will be of great importance in the study
The steady-state homogeneous solutiy¥ (Us,vs,Ws)  of the pattern formation below.
of Eq. (1) is given by the expressions for the first two Bloch  Equation(9) indicates that there are in principle an infi-
vector components, nite number of unstable modes equally spaced onkthe
axis. For vanishing diffusion these modes are all degenerate,
(Q,—APYQ, while for a nonzero diffusion coefficient the threshold in-
Ug= — Wy, (5)  creases for increasing modulus of the wave vector. As is
(Q,—APg?+ (y+Pg)? apparent from the form of Edq1) in Fourier space the prin-
cipal dependence of the growth raigeon D is nw—Dkf
(1+Py)Q, +---[9,16]. Thus by choosing the cell-to-mirror distande
Vg=— — Wg, (6)  which determinesk, [cf. Eq. (9)], one can tune the differ-
(Q,= AP+ (y+Pg)? ence in growth rate between modes with differemt(for
given values of the diffusion coefficient and the other atomic
and a nonlinear algebraic equation for the orientatiQn parameters
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FIG. 2. Steady-state orientatiom versus pump rate produced “:C_> 4r
by the external light beam for the parametdrs: 13, R=0.915,1 ~ 5l
=15mm, Q,/27=15kHz, Q,/27=0, N=1.2x10"cm™3, y g .
=6sec?, I',27=1.8x10° sec?, ue=1.72x10"2°Cm. The in- o bty
terval with a static instability is marked by a thick solid line for a 0 2k 4 6 .8 10 12
distance between the cell and the mirrordsf 800 mm and a dif- L (mm)

“?S'O” parameter O.D:A'(.) mnf/s. Diamonds denme the QOmgln FIG. 3. Neutral stability curves in the plan®{,k,). (a) Pa-
displaying a Hopf bifurcation. Patterns observed in numerical simu-

lations: TR—traveling rectanglesT—turbulence R—roll or stripe rjrlnotﬂers _?r% }ge —Z?E;nrj-l as thm Fig. a)t) A=1§, FN:;ATh
pattern,H m—negative hexagons. cm =, Ahdem= Z, other parameters as in Fig. 2. 1he

domains of the statidHopf) instability are bounded by solid

Ill. RESULTS AND DISCUSSION (dashegilines.

Depending on the parametefsamely, on the external codimension-2 bifurcation point. Inmediately at the thresh-
magnetic field and detuning) the system can behave in old of the Hopf bifurcation, the frequency of the oscillations
various ways. Below we consider several typical examples of)y coincides(within a few percentwith the Larmor fre-
behavior. guency(}, of the transverse magnetic field. Beyond thresh-
old, the Hopf frequency decreases with increasing pump as
shown in Fig. 4.

o o The physical origin of the oscillations is the Larmor pre-

In the absence of a longitudinal magnetic field, the ex-essjon of the magnetization vector in the external magnetic
pression for the steady-state orientation takes the form field [cf. the cross product in Eq1)]. Without feedback the

_ oscillations are damped but can become undamped by the
- Ps (AP92+(y+Py)? 11 feedback. Similar oscillationé&ut homogeneoulsare known
s .2 2 2" to occur in nonlinear resonators filled with an alkaline vapor
VP (APY*H (y+Py)*+ O and were namedmagnetically induced self-oscillations
. , [14,25-21.
As is apparent from Eq11), ws grows monotonically from Analytical results can give only limited information about
0 to 1 with increasing pump rate. Singeis assumed (0 be o hehavior of the system. In order to obtain the full picture,
much smaller than the transverse magnetic fieldich is the  \\erical simulations are necessary. As in previous work
experimentally relevant situatipnthe growth rate is deter- [13,15-17 we have used an explicit difference scheme to

mined by(),. A typical example of such a behavior is pre- integrate the material equatiof®) and a fast Fourier trans-
sented in Fig. 2. The steady-state characteristic is not sengim ajgorithm to treat the propagation of the light field in
tive to a change of the sign of the detuniadcf. Eq.(11)].  free spacgEq. (3)]. Periodic boundary conditions have been

In contrast, the length scales of the developing patterns argssumed. The spatial mesh typically consisted of<1233
different on both sides of the resonaricgé Eq. (9)].

A. Zero longitudinal magnetic field: ©,=0

With the help of a linear stability analysis, we find parti- 40
tions of the steady-state characteristic where the homoge- g5 | Treshold
neous solution is unstable versus pattern formation. Such T oof doos,. at v,=30 kHz
partitions are marked by a thick solid linstatic type of N O L
instability) or diamondgHopf instability) in Fig. 2. Figure 3 & 20} i ’
shows the marginal stability curves for two sets of param- a5 at v,=15kHz
eters: Fig. 8a) corresponds to the case of Fig. 2 and Fidp) 3 o
is produced for the case of larger values of the detuning and 5
the transverse magnetic field. For the static as well as for the oy ’é e e 1o

Hopf instability (if presenj, the wave numbers for the do-
mains in Fig. 3 differ approximately by a factor af5,
which is in accordance with the prediction by E§) (i.e., FIG. 4. The dependence of the Hopf frequencies on the external
m=0 for the left domain, anth=2 for the right on® The  pump rate as calculated from the linear stability analysis for
regions with the static and Hopf instabilities can overlap ag),/27=15 kHz (triangles and Q,/27=30 kHz (squares All

in Fig. 3(b) or not[Fig. 3@)], i.e., one is in the vicinity of a other parameters are as in Fidga

Po (102 Y)
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FIG. 6. Steady-state orientation, versus external pump rate for
the parametersA=8, R=0.915, |=15mm, Q,/27=100 kHz,
O, /2r=9 kHz, N=2x 10" cm~3, d=100 mm, D =100 mnf/sec.
The intervals with static instability are marked by thick solid lines,
HO—positive hexagons.

FIG. 5. (a) and (b) are two snapshots of a traveling rectangle
structure with the temporal interval between them being half a petudinal field (Fig. 20 and no qualitatively new dynamics
riod. The images are in a gray-level coding. White corresponds tarise. On the other hand, if the detuning and the longitudinal
high levels of the orientation. The frames have a size>66nm  magnetic field have the same sign, one can see from the
but show only a quarter of the numerical grid) shows schemati- expression for the steady-state orientati@h that a reso-

cally the instantaneous 2D spatial spectrum of the pattern. Th?lance effect takes place@t= APy, i.e., when the magneti-
. . . . . Sy Yy
dashed arrow indicates the direction of drift. cally induced level splitting is compensated by a light in-

. . . uced level shifAPg [18]. Figure 6 displays an example of
gr%go'”‘?- The results were checked on a mesh with 25(guch a resonancelike behavior: A rather pronounced dip is
X Si pf'?ts' | diff t kinds of patt ith superimposed on the usual characteristic of a saturable me-
_>imulations reveal difierent kinds of patlerns with vary- g,y ntervals of linear instability versus formation of static
Ing cont_rol parameters. For the parameters O.f F|g_. 2, we fin atterns are found on both wings of the resonance. Due to
a traveling rectangléTR) structure in the region, in which the nonmonotonous dependenag(P,) the sodium vapor
only_ the Hopf moc_ies are unstable._ Two snapshots of th'f)ehaves as self-defocusirtfipcusing medium in the inter-
dr|_ft|ng structure(_wnh the temporal _mteryal between them vals with negativepositive) slope. As a consequence of this,
't:)qng half ahperlolj arr(]a pretgegted In F'fgfﬁ@ atrt1d ‘U‘.b)'F the structures emerging on the left wing of the resonance
gure 3¢) shows a sc ematic diagram ot the paltern In Fou, e 5 smaller spatial length scale than the patterns on the
rier space. A dashed arrow indicates the direction of the d”fPight wing
of the patter_n. Traveling rectangles are known to be one of With increasing effective nonlinearitachieved here by
several spatiotemporal structures produced by a Hopf b'furfncreasing the particle densily) the shape of the resonance

cation on a pIané2_8]: With _mcreased pumping we enter the changegFig. 7) and becomes bistable after the emergence of
domain of the static instability where the traveling rectanglestWO saddle-node bifurcation poinfd8]. The steady-state
give way to a state O.f spatlotemporal |rregular_|ty, which W€ characteristic shows the properties attributed to a classical
will call turbulent (T) in the following. A further increase of nonlinear resonanck?9,30. The instability interval at the

the_ pump Ieads_ to the formation of s_tat_ic roIR)_(an_d, in the_ right side of the resonancthe self-focusing part of the char-
vicinity of the right edge of the static instability interval in acteristia is split now into two domains Il and Iil. In addi-

Fig. 2,r?egative hexfagon_$1(w)a For ]Ehe pat:?meters Or Fig. tion to the static instabilitieédomain ) we find that in the
3(b), where zones of static and Hopf instabilities overlap, W neiate vicinity of the resonance a Hopf instability occurs

observed always turbulent behavior. - (diamonds in Fig. ¥. The insertion of Fig. 7 reveals that the
We have presented results for the case of positive deturlyq ¢ instanbility interval links the partitions of static instabili-
ing A, but the same regularitiedurbulent behavior at the tjes on both sides of the resonance.
equal wave numbers of the excited Hopf and static mpdes | et us consider the stability properties for the parameters
have been found also for negatide of Fig. 7 in more detail. Figure 8 presents the marginal sta-
bility curves in the plane spanned by the paramekgyand
k, , wherek, is the wave number of the structure.
One can see from Fig. 8 that the wave number of the Hopf
structures in the defocusing branch nearly coincides with the
For a nonzero magnetic field there are two rather differensize predicted for the static structures on the focusing branch.
situations. If the signs of the detuning and the longitudinalin addition the ratio between the wave vectors of the Hopf
magnetic field are opposite, the steady-state characteristic &nd static modes of domain | is such that two Hopf modes
not altered qualitatively compared to the one for zero longi-with frequencie€), and— ), and with smallest wave num-

K, Q Ky, -y

B. Positive longitudinal magnetic field
and detuning: Q,>0,A>0
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obtained forP,=0.888yx 10* and(b) the pattern constructed only
0 ' : from the Hopf components of the pattern(a). The frames have a
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FIG. 7. Steady-state characteristic fof=8x10"cm™3, D w=wg+ >, [Ae 4t explik;-r,)
=200 mnf/sec, and other parameters as in Fig. 6. The intervals =1
with linear instability against static perturbations I, Il, and Ill are

+Bje'i explig-r,)+c.c. 12
marked by thick solid lines, diamonds mark the interval of the Hopf € explig-r,)+c.cl, (12)

instability. The insertion shows an enlargement of the characteristic _
in the vicinity of the lowest point of the resonance. whereA; (¢;) andB; (¢;) are the real amplitudephases
of the Hopf and static modes, respectively. Referring to Fig.

. . . 1, the wave vectors of the static modes coincide with the
bers can build a static mode with larger wave number

. ) harmonics of the Hopf modes, i.e,=k; =K + 2ymods- OUr
through quadratic coupling. L imulations show that they only develop in a small parameter
When the external pumping is increased above threshol

. e . . ; ; gion in which the static modes are either weakly active or
for the instability domain |, numerical simulations show Sta’weakly(linearly) damped(the case shown in Figs. 7,83)).

tionary negative hexagons which give way to stationaryrhe |atter case was recently discussed in the framework of
stripes and positive hexagons for larger values of the pumpymplitude equation34] and it was shown that in this case
The length scale of the patterns coincides with that predlctegattems composed of resonantly coupled static and Hopf
by the linear stability analysi&f. Fig. 8. If the pumping is  modes can be stabilized already by quadratic interactions.
increased further up to the level where the Hopf instabilityThe authors mention that cubic interactions might provide a
and the I-static instability coexist, we find nontrivial patternsstabilization also in the case that both mode families are
produced by the resonant interaction between the Hopf anlihearly active. Our simulations indicate that—at least in the
static modes. One such resonant pattern ismim&ing hexa-  system considered by us—this parameter region is present
gonsdescribed in Ref.13]. Let us recall briefly that winking  but very limited.
hexagons are formed through the resonant interaction of two In [13] we considered the case of perfect winking hexa-
(Hopf and statigtriads of modes. The spatiotemporal behav-gons, for which the sum of the phases of the three Hopf
ior of this pattern is transparent from the explicit expressionmodes is constant over the transverse plane and changes like
for the orientation distribution Qyt with time. Here in Fig. 88) we present a snapshot of
nonperfect winking hexagons. This pattern has been obtained
for the same parameters as the perfect winking hexagons
with the difference being only the initial transverse distribu-
tion of the magnetization. It can be seen that the form of the
pattern differs in different spatial domains. The structure of
the “defects” becomes evident if we analyze the pattern
presented in Fig. ®) which contains only the Hopf modes.
[This pattern has been obtained from that in Fi¢a) Dy
filtering all modes in Fourier space excluding the Hopf
ones] The stripes of positive and negative hexagons in Fig.
0.7k 9(b) witness that the sum of the three Hopf modes varies
through the patterns from zefpositive hexagons, i.e., bright
peaks on a dark backgrountb 7 (negative hexagons, i.e.,
o5EF | . , . , dark dips in a bright backgroundThe time evolution of the
0 5 10 15 20 25 pattern in Fig. @a) obeys the same regularities as described
in [13] for perfect winking hexagons. Let us note that there is
a striking similarity between our nonperfect winking hexa-
FIG. 8. Neutral stability curves in the plan®g,k,) for the ~ 9On pattern and the transient phason obtained bifevlin a
parameters of Fig. 72, andP, mark the limit points of the homo- Faraday experimer(tf. Fig. 5 from[31]).
geneous solution. The domains of the stdtiopf) instability are Winking hexagons exist only in a rather narrow interval
bounded by soliddashedl lines. of the pump parameter. For a slight increase Rf a

Py (10%y)

06 f

k. (mm™)



FIG. 12. Time evolution of the turbulent patteftop) and its
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spatial Fourier spectruntbottom for the parameters oA = —38,
O,/27w=—100 kHz, Q,/27w=10 kHz, |=15 mm, N=10"*cm 3,

(b)
d=400 mm, D=200 mnf/sec at the instants of tim& (a) t

FIG. 10. Snapshots illustrating the decay of the winking hexa-=0.05 msec,(b) t=0.083 msec,(c) t=0.5 msec. The patterns in
gon pattern by a slight increase of the pump parametePdo real space show only one quarter of the numerical grid. The frame
=0.9yXx 10*. The upper row presents the distribution of the orien- size in real space is 128.2.5 mm, in Fourier space 664 mm L.
tation in real spacéframe size 2.%2.5 mn), the lower row the

corresponding spatial spectrufinrame size 8&80 mmi 1. (a) pre- . Lo
sents the remnants of the winking hexagoft; a triadic Hopf- ~ tionary background formed by winking hexagorishe

static pattern. The patterns in real space show only one quarter &fight peak§ in the Fourier spectrum of Fig(l‘.l)]x:orresppnd
the numerical grid. to the amplitudes of the Hopf and tw8-static moded.With

further increasing?, the number of localized states grows
winking-hexagon-like structurgFig. 10@)] is unstable and and they build a hexagonal lattice with a length scale as
decays. In the course of time, the structure evolves to a driftPredicted by the linear stability analysis for the domain I of
ing rhomb pattern. A snapshot is shown in Fig(dORe- Fig. 8. A detailed investigation of this fairly complicated
cently such drifting rhombs were naméthdic Hopf-static ~ Situation is postponed to a future paper.
patterns[12], because they are composed of thieeo Hopf Concerning the description of hybrid Hopf-static patterns
and one staticmodes. Returning to Fig. 1 one can see thatwith the help of amplitude equations, it should be empha-
the two Hopf modes are locked through quadratic couplingsized that the terms responsible for coherent mode coupling
with the static mode. To our knowledge, spontaneously driftshould be keptE.g., in terms of Fig. 1 the time evolution of
ing triadic Hopf-static patterns have not been observed up tée amplitude of the static mod#,(q,) is influenced by the
now experimentally in systems with rotational symmetry, butterm A;(k;)A,(k,), and one Hopf mode is related to the
only in situations in which the drift was induced by a tilt of other Hopf modes via interaction with the static mddgne
the feedback mirrof32]. The triadic Hopf-static pattern ap- consequences of these contributions have been considered
pears to be only transient in this situation, though it is foundonly recently[3,12,7,34.
to be stable for other parameters. Finally, the structure
evolves to the asymptotically stable state of Fig. 11. The two
very bright spots in the right upper corner of Fig.(dlare o
localized states which are excited due to the static instability The simultaneous change of the signs{bf and A does
of the domain ll(cf. Figs. 7, 8. As can be seen in Fig. 14 not affect the steady-state characteristic given by &g
the localized states are inserted in the low-amplitude nonstaHowever, the stability properties change such that the inner
circle in Fig. 1 corresponds now to the static instability
whereas the outer circle corresponds to the Hopf instability.

Contrary to the case of positive, andA, a quadratic cou-
pling of the two static modes cannot give the Hopf mdde

a consequence, spatiotemporal phase matching cannot be
achieved. Numerical simulations for this case show that the
simultaneous excitement of the Hopf and static modes leads
to the development of spatiotemporal turbulence. Figure 12
illustrates the time evolution of the turbulent state from the
corresponding homogeneous steady state in which the atomic

FIG. 11. (a) White-gray plot of the the final pattern arf) its ~ variables are randomized over the spatial grid. Figure)12

2D Fourier spectrum after the transiddtsplayed in Fig. 1pillus- ~ Shows a snapshot in the initial stage of the development
trating the formation of localized states on the nonstationary backwhere the static modes are most pronounced in the spatial
ground of the winking hexagons. The frame sizddnis 5x5 mm,  spectrunflower part of Fig. 12a)]. With evolving time more

in (b) 80x80 mm L. and more spatial frequencies are excitEiy. 12b)] and the

C. Negative longitudinal magnetic field
and detuning: Q,<0,A<0

a) b)
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FIG. 13. Dynamics of the spatial spectra obtained from the data (ki)

presented in the lower part of Fig. 12 by integrating over the polar FIG. 14. (a) Fragment of the temporal evolution of the local
coordinate. intensity of the transmitted light an@) the Fourier spectrum cal-

. . culated from the full time series.
Hopf modes appear to be dominant. The last picture of the

serieg[Fig. 12c)] shows a snapshot of the asymptotic turbu-y51yes of the cell-to-mirror distance. This dependencelon

lent state. Characterizing the turbulent behavior one can say;, pe understood by the fact that the Hopf modes are
that small and large bright spotand clouds of spojsare in - 4amped more strongly by diffusion than the static ones, since
disordered motion whereas the spectrilawer part of Fig.  hejr wave number is larger. The damping is smaller and less
12(c)] maintains its main features. , _ important for highd (cf. the discussion at the end of Sed. II

To see the development of the spatial frequencies morgq; 4 small mirror distance secondary bifurcations to station-
clearly we present in Fig. 13 amplitude spectra which justyy siryctures occur which are discussed in more detail in
depend on the modulus of the wave vector. They are obri5 17 Note that the turbulent region extends beyond the
tained from the data presented in the lower part of Fig. 12 by, gers of the domain in which the Hopf modes are unstable.

integrating over the polar coordinate. In the initial stage esThis is possibly due to the fact that the Hopf modes are only
sentially only one peaKcurve (a) in Fig. 13| is present, slightly damped here.

which is due to the development of the static instability.
Later, along with the static peak, the Hopf pddke next
peak to the right from the static one in curde] grows.
Many other peaks appear. Presumably, this is due to the self- We have examined three different situatiotisthe Hopf

and cross-interaction between the different modes, since thend the static modes are of the same spatial wave number;
distance between the peaks corresponds roughly to the difii) the wave number of the Hopf mode is smaller than the
ference in wave number between the Hopf and the statione of the static one so that the sum of two Hopf modes can
modes. In the process of competition the Hopf instabilityresonate with a static modgiji) the wave number of the
wins and the curvéc) in Fig. 13 (corresponding to the tur- static mode is smaller than the one of the Hopf mode. Based
bulent statg shows that the peak with the highest excitation

is the Hopf one. The spectra are found to be insensitive to the 500
details of the numericgumber of mesh points, size of trans-

verse arep 400 |

An example of the temporal characteristics of the turbu-
lent behavior for these parameters is presented in Fig. 14.
The time dependence of the intensity of the light transmitted
through the cell is shown in Fig. 1@. We have determined
the local intensity in one point of the grid imitating a small
detector in the experiment. One can see that the light inten-
sity pulsates ratheirregularly, which is confirmed by the 100 L
temporal Fourier spectrum in Fig. (B}. Note that the spec-
trum has no visible local maximum for the Hopf frequency
predicted by the linear stability analysis.

The described main features of the observed spatiotempo-
ral chaotic behavior give us the arguments to refer to it as
amplitude turbulenc¢35,36. FIG. 15. Bifurcation diagram in the plane of control parameters

Figure 15 provides an overview over the bifurcation be-(P,,d) for the parameter€),/27=—100 kHz, Q,/27=10 kHz,
havior in the Po-d) space. The pointdenoted byA) for ~ A=-8, N=10"cm™3. Solid lines enclose the two domains | and
which the behavior was just discussed is well inside the ret of static instability, the area with a Hopf instability is bounded by
gion with turbulent behavior. As is apparent from the dia-the fine dashed line. Different regimes found in simulatons are
gram, the Hopf bifurcation takes place only for rather highseparated by the thick dashed lin&—secondary instabiliti¢s

IV. CONCLUSION
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on the findings we can draw the following conclusions. Each
one taken alone for itself—both Hopf and static modes—can
build regular patterns. However, only in cage does the
interplay of simultaneously excited Hopf and static modes
lead to regular spatiotemporal structures. In cdgeand iii )

the interaction of instabilities gives rise to spatiotemporal
turbulence. The latter fact confirms the results obtained in

1= 375~ 2Yen(1—Wo) E

+O,[Q+ (vs+ AU E]+(Q,— AP)?,

=3y (1-Wg)E,

other pattern-forming systenj$9-23.
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APPENDIX LINEAR STABILITY ANALYSIS
ao=[ ngﬁ‘ (Q,—A Ps)z][ Yeft— (1_WS)E] + Ve[ Oy

+(vs+tAUYE]- 0, (Q,— AP (Avs—Ug E,

where

YVeff= Y+ Pst Dk? ,

Z=—RP, Re xin) kl|el " Klxin(1=ws)1/2)2

, (kfd 1 3(kﬁol)

sin +—co§ —||.
A k
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