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Interaction between Hopf and static instabilities in a pattern-forming optical system
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Optical pattern formation in a spin-1/2 atomic system is theoretically studied in the situation of interaction
between the Hopf and static instabilities. Variation of the parameters of the system permits a drastic change of
the ratio between the spatial wave numbers of the Hopf and the static modes. If the mode coupling satisfies
spatiotemporal phase matching conditions, regular patterns in the form of triadic Hopf-static patterns or oscil-
lating patterns with hexagonal symmetry~‘‘winking hexagons’’! are formed. Otherwise, the simultaneous
excitement of the Hopf and static modes leads to the development of spatiotemporal turbulence that is in
agreement with results obtained in other systems.@S1063-651X~98!10504-4#

PACS number~s!: 05.45.1b, 47.54.1r, 42.65.Sf, 82.40.Bj
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I. INTRODUCTION

In pattern-forming systems, several modes of differ
frequency and/or different modulus of wave vectors may
multaneously be active. In a rotational symmetric tw
dimensional system there is in addition a degeneracy
tween all modes having wave vectors of the same modu
i.e., forming a circle in Fourier space. We will call such a s
of modes a ‘‘family’’ in the following. A resulting pattern
will strongly be influenced by the development and inter
tion of modes of different families. In particular, resona
mode interaction permits us to explain pattern selection
metamorphoses in the Taylor-Dean system@1#, in Rayleigh-
Bénard convection of binary mixtures@2#, and in the Bruss-
elator model@3#. It has also been shown that stationary tw
dimensional~2D! quasicrystals may be stabilized by a triad
coupling between modes from different families@4–7#.

The excitation of several families of spatial modes~trans-
verse to the direction of light propagation! is a striking ge-
neric feature of many pattern-forming nonlinear optical s
tems@7–11#. This is due to the properties of the diffractio
operator which provides spatial transverse coupling wit
the propagating light beam and is the origin of the spa
instability. Therefore nonlinear optical systems can be c
sidered to be particularly suitable to study pattern-form
processes involving modes from several families. It has
cently been shown that—in addition to stationary structu
@7,10,11#—nonstationary patterns named triadic Hopf-sta
patterns@12# and winking hexagons@13# occur in optical
systems with a wide aperture feedback. The nonstationa
is caused by the circumstance that one of the unstable m
families ~schematically shown byki in Fig. 1! originates
from a Hopf type of instability whereas the familyqi is due
to a static instability. It is clear from Fig. 1 that a spatiote
poral phase matching condition is fulfilled if thek1 mode has
the Hopf frequencyV and thek2 mode the frequency2V
and if k11k25q1 .

We consider a single-feedback-mirror system@9# with
spin-1/2 atoms~modeling, e.g., sodium atoms in a buffer g
atmosphere of high pressure@14#! in an external magnetic
field as a nonlinear medium. This combination alrea
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proved to be very suitable to study optical pattern format
experimentally and theoretically due to its versatility@13,15–
18#. In this paper attention is paid to the spatiotemporal p
terns which arise due to the interaction between Hopf a
static modes. The suitable adjustment of the control par
eters of the system—such as the external magnetic field
the frequency detuning between the incident light and
atomic transition—allows us to choose whether the Hopf
the static modes lie on the outer~or inner! circle of Fig. 1.
This totally alters the phase matching conditions and thus
allowed interactions between the two mode families. We
not aware of any nonoptical system which allows such
easy exchange of the relative length scales of the two ki
of instabilities.

Numerical simulations permit us to conclude that regu
spatiotemporal structures~triadic Hopf-static patterns and
winking hexagons! exist when the mode coupling satisfies
phase matching condition and that spatiotemporal turbule
develops in the opposite case. It should be noted that
latter result matches the findings obtained for other, es
cially reaction-diffusion type, systems under conditions
the simultaneous development of Hopf and Turing mod
@19–23#.

II. MODEL AND STABILITY OF HOMOGENEOUS
SOLUTION

The model we are going to analyze was introduced
Refs. @15, 16# to describe the experimental observation
stationary patterns. It is based on the quantum mechan
equation of motion for the Bloch vectorm5(u,v,w) de-
scribing the dynamics of the magnetization in the sodi
ground state@15,14#:

] tm52~g2DD'1P!m2mV1êzP ~1!

and the classical paraxial wave equation for the light pro
gation @8,9#. In Eq. ~1!, g is the collision induced relaxation
of m, D is the diffusion constant,D' is the transverse part o
the Laplacian,P denotes the optical pump rate. The vect
V5(Vx,0,Vz2D̄P) is an effective torgue vector@14# which
1654 © 1998 The American Physical Society
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PRE 58 1655INTERACTION BETWEEN HOPF AND STATIC . . .
is composed not only from the Larmor frequenciesVx and
Vz of the external magnetic field components, but it conta
the light intensity dependent termD̄P originating from the
light shift ~@18#, and references therein!. D̄ is the detuning
between the incident field and the atomic transition, norm
ized to the relaxation constantG2 of the polarization of the
medium. The pump rateP is taken to be proportional to th
sum of the intensities of the forward (E0) and the backward
(Eb) waves:

P5~ uE0u21uEbu2!umeu2/4\2G2~D̄211!. ~2!

The backward field is given by

Eb5ARe2 idD' /kEt , ~3!

whereEt5E0 exp(2ixkl/2) is the transmitted field~x is the
susceptibility of the sodium vapor,k is the wave number o
light in vacuum,l is the length of nonlinear medium!. The
exponential factor stands for the formal solution of t
paraxial wave equation describing light propagation in f
space of lengthd between the cell and the mirror with re
flection coefficientR.

The susceptibility is coupled to the longitudinal comp
nent of the orientation of the sodium ground statew[mz
through@14#

x52
Numeu2

2\e0G2

D̄1 i

D̄211
~12w![x lin~12w!, ~4!

whereN is the sodium particle density.
The steady-state homogeneous solutionms5(us ,vs ,ws)

of Eq. ~1! is given by the expressions for the first two Bloc
vector components,

us5
~Vz2D̄Ps!Vx

~Vz2D̄Ps!
21~g1Ps!

2
ws , ~5!

vs52
~11Ps!Vx

~Vz2D̄Ps!
21~g1Ps!

2
ws , ~6!

and a nonlinear algebraic equation for the orientationws ,

FIG. 1. Schematic diagram illustrating the resonant coupling
modes from two different families.
s

l-

e

ws5
Ps

g1Ps

~Vz2D̄Ps!
21~g1Ps!

2

~Vz2D̄Ps!
21~g1Ps!

21Vx
2

, ~7!

with Ps5P0$11Ruexp@2iklxlin(12ws)/2#u2%. Here P0 de-
notes the pump rate introduced by the forward beam (P0
;uE0u2) which is referred to as a control parameter.

A linear stability analysis with respect to a spatially inh
mogeneous perturbation proportional to exp(ht1ik'•r')
yields a cubic equation for the growth exponenth :

h31a2h21a1h1a050, ~8!

with the coefficientsai given in the Appendix. A bifurcation
is referred to as stationary if there are real rootsh i larger
than zero. In the case of a pair of complex conjugated ro
with positive Re(hi) we deal with a Hopf bifurcation. The
condition of the Hopf bifurcation is determined by the coe
ficients of Eq.~8!: ai.0 anda1a22a0,0.

It is instructive to note here that, since the diffractiv
coupling is determined by the operator exp(2idD' /k) in Eq.
~3!, the coefficientsai depend on the diffraction paramete
dk'

2 /k acting as the argument of the trigonometric sine a
cosine functions. Obviously, extremal values for the coe
cientsai are achieved for sin(dk'

2/k)561, or

dk'
2

k
5S 1

2
1mDp, ~9!

wherem is integer.~The influence of the cosine term is no
important in the case of a large detuning parameterD̄.! This
circumstance has already been noted in the earliest stud
the single-feedback-mirror model@8# and can be interpreted
from the viewpoint of the Talbot effect@24#. Even values of
m correspond to a self-focusing situation, i.e., the refract
index

n~P!512
Numeu2

4\e0G2

D̄

D̄211
@12w~P!# ~10!

increases for increasing pump rate, while odd values om
correspond to a self-defocusing situation. This difference
length scale selection will be of great importance in the stu
of the pattern formation below.

Equation~9! indicates that there are in principle an infi
nite number of unstable modes equally spaced on thek'

2

axis. For vanishing diffusion these modes are all degener
while for a nonzero diffusion coefficient the threshold i
creases for increasing modulus of the wave vector. As
apparent from the form of Eq.~1! in Fourier space the prin
cipal dependence of the growth rateh on D is h'2Dk'

2

1¯ @9,16#. Thus by choosing the cell-to-mirror distanced,
which determinesk' @cf. Eq. ~9!#, one can tune the differ-
ence in growth rate between modes with differentm ~for
given values of the diffusion coefficient and the other atom
parameters!.

f



l
n
s

x

-
e-
n

a

ti-
g
u

m

an
th
-

a

h-
s

h-
as

e-
etic

the

or
s

ut
re,
ork
to

-
in
n

d

a

in
u

e

rnal
for

1656 PRE 58YU. A. LOGVIN AND T. ACKEMANN
III. RESULTS AND DISCUSSION

Depending on the parameters~namely, on the externa
magnetic field and detuningD̄! the system can behave i
various ways. Below we consider several typical example
behavior.

A. Zero longitudinal magnetic field: Vz50

In the absence of a longitudinal magnetic field, the e
pression for the steady-state orientation takes the form

ws5
Ps

g1Ps

~D̄Ps!
21~g1Ps!

2

~D̄Ps!
21~g1Ps!

21Vx
2

. ~11!

As is apparent from Eq.~11!, ws grows monotonically from
0 to 1 with increasing pump rate. Sinceg is assumed to be
much smaller than the transverse magnetic field~which is the
experimentally relevant situation!, the growth rate is deter
mined byVx . A typical example of such a behavior is pr
sented in Fig. 2. The steady-state characteristic is not se
tive to a change of the sign of the detuningD̄ @cf. Eq. ~11!#.
In contrast, the length scales of the developing patterns
different on both sides of the resonance@cf. Eq. ~9!#.

With the help of a linear stability analysis, we find par
tions of the steady-state characteristic where the homo
neous solution is unstable versus pattern formation. S
partitions are marked by a thick solid line~static type of
instability! or diamonds~Hopf instability! in Fig. 2. Figure 3
shows the marginal stability curves for two sets of para
eters: Fig. 3~a! corresponds to the case of Fig. 2 and Fig. 3~b!
is produced for the case of larger values of the detuning
the transverse magnetic field. For the static as well as for
Hopf instability ~if present!, the wave numbers for the do
mains in Fig. 3 differ approximately by a factor ofA5,
which is in accordance with the prediction by Eq.~9! ~i.e.,
m50 for the left domain, andm52 for the right one!. The
regions with the static and Hopf instabilities can overlap
in Fig. 3~b! or not @Fig. 3~a!#, i.e., one is in the vicinity of a

FIG. 2. Steady-state orientationws versus pump rate produce

by the external light beam for the parametersD̄513, R50.915, l
515 mm, Vx/2p515 kHz, Vz/2p50, N51.231014 cm23, g
56 sec21, G2/2p51.83109 sec21, me51.72310229 Cm. The in-
terval with a static instability is marked by a thick solid line for
distance between the cell and the mirror ofd5800 mm and a dif-
fusion parameter ofD540 mm2/s. Diamonds denote the doma
displaying a Hopf bifurcation. Patterns observed in numerical sim
lations:TR—traveling rectangles,T—turbulence,R—roll or stripe
pattern,Hp—negative hexagons.
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codimension-2 bifurcation point. Immediately at the thres
old of the Hopf bifurcation, the frequency of the oscillation
VH coincides~within a few percent! with the Larmor fre-
quencyVx of the transverse magnetic field. Beyond thres
old, the Hopf frequency decreases with increasing pump
shown in Fig. 4.

The physical origin of the oscillations is the Larmor pr
cession of the magnetization vector in the external magn
field @cf. the cross product in Eq.~1!#. Without feedback the
oscillations are damped but can become undamped by
feedback. Similar oscillations~but homogeneous! are known
to occur in nonlinear resonators filled with an alkaline vap
and were namedmagnetically induced self-oscillation
@14,25–27#.

Analytical results can give only limited information abo
the behavior of the system. In order to obtain the full pictu
numerical simulations are necessary. As in previous w
@13,15–17# we have used an explicit difference scheme
integrate the material equations~1! and a fast Fourier trans
form algorithm to treat the propagation of the light field
free space@Eq. ~3!#. Periodic boundary conditions have bee
assumed. The spatial mesh typically consisted of 1283128

-
FIG. 3. Neutral stability curves in the plane (P0 ,k'). ~a! Pa-

rameters are the same as in Fig. 2.~b! D̄516, N51.4
31014 cm23, Vx/2p545 kHz, other parameters as in Fig. 2. Th
domains of the static~Hopf! instability are bounded by solid
~dashed! lines.

FIG. 4. The dependence of the Hopf frequencies on the exte
pump rate as calculated from the linear stability analysis
Vx/2p515 kHz ~triangles! and Vx/2p530 kHz ~squares!. All
other parameters are as in Fig. 3~a!.
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PRE 58 1657INTERACTION BETWEEN HOPF AND STATIC . . .
grid points. The results were checked on a mesh with
3256 points.

Simulations reveal different kinds of patterns with var
ing control parameters. For the parameters of Fig. 2, we
a traveling rectangle~TR! structure in the region, in which
only the Hopf modes are unstable. Two snapshots of
drifting structure~with the temporal interval between the
being half a period! are presented in Figs. 5~a! and 5~b!.
Figure 5~c! shows a schematic diagram of the pattern in F
rier space. A dashed arrow indicates the direction of the d
of the pattern. Traveling rectangles are known to be one
several spatiotemporal structures produced by a Hopf bi
cation on a plane@28#. With increased pumping we enter th
domain of the static instability where the traveling rectang
give way to a state of spatiotemporal irregularity, which w
will call turbulent (T) in the following. A further increase o
the pump leads to the formation of static rolls (R) and, in the
vicinity of the right edge of the static instability interval i
Fig. 2, negative hexagons (Hp). For the parameters of Fig
3~b!, where zones of static and Hopf instabilities overlap,
observed always turbulent behavior.

We have presented results for the case of positive de
ing D̄, but the same regularities~turbulent behavior at the
equal wave numbers of the excited Hopf and static mod!

have been found also for negativeD̄.

B. Positive longitudinal magnetic field
and detuning: Vz>0,D̄>0

For a nonzero magnetic field there are two rather differ
situations. If the signs of the detuning and the longitudi
magnetic field are opposite, the steady-state characteris
not altered qualitatively compared to the one for zero lon

FIG. 5. ~a! and ~b! are two snapshots of a traveling rectang
structure with the temporal interval between them being half a
riod. The images are in a gray-level coding. White correspond
high levels of the orientation. The frames have a size of 636 mm
but show only a quarter of the numerical grid.~c! shows schemati-
cally the instantaneous 2D spatial spectrum of the pattern.
dashed arrow indicates the direction of drift.
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tudinal field ~Fig. 2! and no qualitatively new dynamic
arise. On the other hand, if the detuning and the longitud
magnetic field have the same sign, one can see from
expression for the steady-state orientation~7! that a reso-
nance effect takes place atVz5D̄Ps , i.e., when the magneti
cally induced level splitting is compensated by a light i
duced level shiftD̄Ps @18#. Figure 6 displays an example o
such a resonancelike behavior: A rather pronounced di
superimposed on the usual characteristic of a saturable
dium. Intervals of linear instability versus formation of stat
patterns are found on both wings of the resonance. Du
the nonmonotonous dependencews(P0) the sodium vapor
behaves as self-defocusing~focusing! medium in the inter-
vals with negative~positive! slope. As a consequence of thi
the structures emerging on the left wing of the resona
have a smaller spatial length scale than the patterns on
right wing.

With increasing effective nonlinearity~achieved here by
increasing the particle densityN! the shape of the resonanc
changes~Fig. 7! and becomes bistable after the emergence
two saddle-node bifurcation points@18#. The steady-state
characteristic shows the properties attributed to a class
nonlinear resonance@29,30#. The instability interval at the
right side of the resonance~the self-focusing part of the char
acteristic! is split now into two domains II and III. In addi-
tion to the static instabilities~domain I! we find that in the
immediate vicinity of the resonance a Hopf instability occu
~diamonds in Fig. 7!. The insertion of Fig. 7 reveals that th
Hopf instability interval links the partitions of static instabil
ties on both sides of the resonance.

Let us consider the stability properties for the paramet
of Fig. 7 in more detail. Figure 8 presents the marginal s
bility curves in the plane spanned by the parametersP0 and
k' , wherek' is the wave number of the structure.

One can see from Fig. 8 that the wave number of the H
structures in the defocusing branch nearly coincides with
size predicted for the static structures on the focusing bran
In addition the ratio between the wave vectors of the Ho
and static modes of domain I is such that two Hopf mod
with frequenciesVH and2VH and with smallest wave num

-
to

e

FIG. 6. Steady-state orientationws versus external pump rate fo

the parameters:D̄58, R50.915, l 515 mm, Vz/2p5100 kHz,
Vx/2p59 kHz, N5231013 cm23, d5100 mm,D5100 mm2/sec.
The intervals with static instability are marked by thick solid line
H0—positive hexagons.



be

o
ta
ar
m
te

lity
ns
an

tw
v

io

ig.
the

ter
or

k of
e
opf
ns.

e a
are
he
sent

a-
opf
s like
f

ined
ons
u-
the
of
rn
.

pf
ig.
ies
t
.,

ed
is

a-

al

a
re
p

ist

rn
y

id.

1658 PRE 58YU. A. LOGVIN AND T. ACKEMANN
bers can build a static mode with larger wave num
through quadratic coupling.

When the external pumping is increased above thresh
for the instability domain I, numerical simulations show s
tionary negative hexagons which give way to station
stripes and positive hexagons for larger values of the pu
The length scale of the patterns coincides with that predic
by the linear stability analysis~cf. Fig. 8!. If the pumping is
increased further up to the level where the Hopf instabi
and the I-static instability coexist, we find nontrivial patter
produced by the resonant interaction between the Hopf
static modes. One such resonant pattern is thewinking hexa-
gonsdescribed in Ref.@13#. Let us recall briefly that winking
hexagons are formed through the resonant interaction of
~Hopf and static! triads of modes. The spatiotemporal beha
ior of this pattern is transparent from the explicit express
for the orientation distribution

FIG. 7. Steady-state characteristic forN5831013 cm23, D
5200 mm2/sec, and other parameters as in Fig. 6. The interv
with linear instability against static perturbations I, II, and III a
marked by thick solid lines, diamonds mark the interval of the Ho
instability. The insertion shows an enlargement of the character
in the vicinity of the lowest point of the resonance.

FIG. 8. Neutral stability curves in the plane (P0 ,k') for the
parameters of Fig. 7.P↑ andP↓ mark the limit points of the homo-
geneous solution. The domains of the static~Hopf! instability are
bounded by solid~dashed! lines.
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@Aie
if i1 iVHt exp~ iki•r'!

1Bie
ic i exp~ iqi•r'!1c.c.#, ~12!

whereAi (f i) andBi (c i) are the real amplitudes~phases!
of the Hopf and static modes, respectively. Referring to F
1, the wave vectors of the static modes coincide with
harmonics of the Hopf modes, i.e.,qi5ki2k( i 12)mod3. Our
simulations show that they only develop in a small parame
region in which the static modes are either weakly active
weakly ~linearly! damped~the case shown in Figs. 7, 8@33#!.
The latter case was recently discussed in the framewor
amplitude equations@34# and it was shown that in this cas
patterns composed of resonantly coupled static and H
modes can be stabilized already by quadratic interactio
The authors mention that cubic interactions might provid
stabilization also in the case that both mode families
linearly active. Our simulations indicate that—at least in t
system considered by us—this parameter region is pre
but very limited.

In @13# we considered the case of perfect winking hex
gons, for which the sum of the phases of the three H
modes is constant over the transverse plane and change
VHt with time. Here in Fig. 9~a! we present a snapshot o
nonperfect winking hexagons. This pattern has been obta
for the same parameters as the perfect winking hexag
with the difference being only the initial transverse distrib
tion of the magnetization. It can be seen that the form of
pattern differs in different spatial domains. The structure
the ‘‘defects’’ becomes evident if we analyze the patte
presented in Fig. 9~b! which contains only the Hopf modes
@This pattern has been obtained from that in Fig. 9~a! by
filtering all modes in Fourier space excluding the Ho
ones.# The stripes of positive and negative hexagons in F
9~b! witness that the sum of the three Hopf modes var
through the patterns from zero~positive hexagons, i.e., brigh
peaks on a dark background! to p ~negative hexagons, i.e
dark dips in a bright background!. The time evolution of the
pattern in Fig. 9~a! obeys the same regularities as describ
in @13# for perfect winking hexagons. Let us note that there
a striking similarity between our nonperfect winking hex
gon pattern and the transient phason obtained by Mu¨ller in a
Faraday experiment~cf. Fig. 5 from @31#!.

Winking hexagons exist only in a rather narrow interv
of the pump parameter. For a slight increase ofP0 a

ls

f
ic

FIG. 9. ~a! A snapshot of a nonperfect winking hexagon patte
obtained forP050.888g3104 and~b! the pattern constructed onl
from the Hopf components of the pattern in~a!. The frames have a
size of 2.532.5 mm but show only a quarter of the numerical gr
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PRE 58 1659INTERACTION BETWEEN HOPF AND STATIC . . .
winking-hexagon-like structure@Fig. 10~a!# is unstable and
decays. In the course of time, the structure evolves to a d
ing rhomb pattern. A snapshot is shown in Fig. 10~b!. Re-
cently such drifting rhombs were namedtriadic Hopf-static
patterns@12#, because they are composed of three~two Hopf
and one static! modes. Returning to Fig. 1 one can see t
the two Hopf modes are locked through quadratic coupl
with the static mode. To our knowledge, spontaneously d
ing triadic Hopf-static patterns have not been observed u
now experimentally in systems with rotational symmetry, b
only in situations in which the drift was induced by a tilt o
the feedback mirror@32#. The triadic Hopf-static pattern ap
pears to be only transient in this situation, though it is fou
to be stable for other parameters. Finally, the struct
evolves to the asymptotically stable state of Fig. 11. The
very bright spots in the right upper corner of Fig. 11~a! are
localized states which are excited due to the static instab
of the domain II~cf. Figs. 7, 8!. As can be seen in Fig. 11~a!
the localized states are inserted in the low-amplitude non

FIG. 10. Snapshots illustrating the decay of the winking he
gon pattern by a slight increase of the pump parameter toP0

50.9g3104. The upper row presents the distribution of the orie
tation in real space~frame size 2.532.5 mm!, the lower row the
corresponding spatial spectrum~frame size 80380 mm21!. ~a! pre-
sents the remnants of the winking hexagons;~b! a triadic Hopf-
static pattern. The patterns in real space show only one quart
the numerical grid.

FIG. 11. ~a! White-gray plot of the the final pattern and~b! its
2D Fourier spectrum after the transient~displayed in Fig. 10! illus-
trating the formation of localized states on the nonstationary ba
ground of the winking hexagons. The frame size in~a! is 535 mm,
in ~b! 80380 mm21.
ft-

t
g
t-
to
t

d
e
o
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a-

tionary background formed by winking hexagons.@The
bright peaks in the Fourier spectrum of Fig. 11~b! correspond
to the amplitudes of the Hopf and the)-static modes.# With
further increasingP0 the number of localized states grow
and they build a hexagonal lattice with a length scale
predicted by the linear stability analysis for the domain II
Fig. 8. A detailed investigation of this fairly complicate
situation is postponed to a future paper.

Concerning the description of hybrid Hopf-static patter
with the help of amplitude equations, it should be emph
sized that the terms responsible for coherent mode coup
should be kept.@E.g., in terms of Fig. 1 the time evolution o
the amplitude of the static modeB1(q1) is influenced by the
term A1(k1)A2(k2), and one Hopf mode is related to th
other Hopf modes via interaction with the static mode.# The
consequences of these contributions have been consid
only recently@3,12,7,34#.

C. Negative longitudinal magnetic field
and detuning: Vz<0,D̄<0

The simultaneous change of the signs ofVz and D̄ does
not affect the steady-state characteristic given by Eq.~7!.
However, the stability properties change such that the in
circle in Fig. 1 corresponds now to the static instabil
whereas the outer circle corresponds to the Hopf instabi
Contrary to the case of positiveVz andD̄, a quadratic cou-
pling of the two static modes cannot give the Hopf mode. As
a consequence, spatiotemporal phase matching canno
achieved. Numerical simulations for this case show that
simultaneous excitement of the Hopf and static modes le
to the development of spatiotemporal turbulence. Figure
illustrates the time evolution of the turbulent state from t
corresponding homogeneous steady state in which the ato
variables are randomized over the spatial grid. Figure 12~a!
shows a snapshot in the initial stage of the developm
where the static modes are most pronounced in the sp
spectrum@lower part of Fig. 12~a!#. With evolving time more
and more spatial frequencies are excited@Fig. 12~b!# and the

-

-

of

k-

FIG. 12. Time evolution of the turbulent pattern~top! and its

spatial Fourier spectrum~bottom! for the parameters ofD̄528,
Vz/2p52100 kHz, Vx/2p510 kHz, l 515 mm, N51014 cm23,
d5400 mm, D5200 mm2/sec at the instants of timet: ~a! t
50.05 msec,~b! t50.083 msec,~c! t50.5 msec. The patterns in
real space show only one quarter of the numerical grid. The fra
size in real space is 12.5312.5 mm, in Fourier space 64364 mm21.
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Hopf modes appear to be dominant. The last picture of
series@Fig. 12~c!# shows a snapshot of the asymptotic turb
lent state. Characterizing the turbulent behavior one can
that small and large bright spots~and clouds of spots! are in
disordered motion whereas the spectrum@lower part of Fig.
12~c!# maintains its main features.

To see the development of the spatial frequencies m
clearly we present in Fig. 13 amplitude spectra which j
depend on the modulus of the wave vector. They are
tained from the data presented in the lower part of Fig. 12
integrating over the polar coordinate. In the initial stage
sentially only one peak@curve ~a! in Fig. 13# is present,
which is due to the development of the static instabili
Later, along with the static peak, the Hopf peak@the next
peak to the right from the static one in curve~b!# grows.
Many other peaks appear. Presumably, this is due to the
and cross-interaction between the different modes, since
distance between the peaks corresponds roughly to the
ference in wave number between the Hopf and the st
modes. In the process of competition the Hopf instabi
wins and the curve~c! in Fig. 13 ~corresponding to the tur
bulent state! shows that the peak with the highest excitati
is the Hopf one. The spectra are found to be insensitive to
details of the numerics~number of mesh points, size of tran
verse area!.

An example of the temporal characteristics of the turb
lent behavior for these parameters is presented in Fig.
The time dependence of the intensity of the light transmit
through the cell is shown in Fig. 14~a!. We have determined
the local intensity in one point of the grid imitating a sma
detector in the experiment. One can see that the light in
sity pulsates ratherirregularly, which is confirmed by the
temporal Fourier spectrum in Fig. 14~b!. Note that the spec
trum has no visible local maximum for the Hopf frequen
predicted by the linear stability analysis.

The described main features of the observed spatiotem
ral chaotic behavior give us the arguments to refer to it
amplitude turbulence@35,36#.

Figure 15 provides an overview over the bifurcation b
havior in the (P0-d) space. The point~denoted byA! for
which the behavior was just discussed is well inside the
gion with turbulent behavior. As is apparent from the d
gram, the Hopf bifurcation takes place only for rather hi

FIG. 13. Dynamics of the spatial spectra obtained from the d
presented in the lower part of Fig. 12 by integrating over the po
coordinate.
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values of the cell-to-mirror distance. This dependence od
can be understood by the fact that the Hopf modes
damped more strongly by diffusion than the static ones, si
their wave number is larger. The damping is smaller and l
important for highd ~cf. the discussion at the end of Sec. II!.
For a small mirror distance secondary bifurcations to stati
ary structures occur which are discussed in more detai
@15,17#. Note that the turbulent region extends beyond
borders of the domain in which the Hopf modes are unsta
This is possibly due to the fact that the Hopf modes are o
slightly damped here.

IV. CONCLUSION

We have examined three different situations:~i! the Hopf
and the static modes are of the same spatial wave num
~ii ! the wave number of the Hopf mode is smaller than
one of the static one so that the sum of two Hopf modes
resonate with a static mode;~iii ! the wave number of the
static mode is smaller than the one of the Hopf mode. Ba

ta
r FIG. 14. ~a! Fragment of the temporal evolution of the loc
intensity of the transmitted light and~b! the Fourier spectrum cal
culated from the full time series.

FIG. 15. Bifurcation diagram in the plane of control paramet
(P0 ,d) for the parametersVz/2p52100 kHz, Vx/2p510 kHz,

D̄528, N51014 cm23. Solid lines enclose the two domains I an
II of static instability, the area with a Hopf instability is bounded b
the fine dashed line. Different regimes found in simulatons
separated by the thick dashed lines~SI—secondary instabilities!.
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on the findings we can draw the following conclusions. Ea
one taken alone for itself—both Hopf and static modes—
build regular patterns. However, only in case~ii ! does the
interplay of simultaneously excited Hopf and static mod
lead to regular spatiotemporal structures. In cases~i! and~iii !
the interaction of instabilities gives rise to spatiotempo
turbulence. The latter fact confirms the results obtained
other pattern-forming systems@19–23#.

ACKNOWLEDGMENTS

The authors thank W. Lange and B. Scha¨pers for numer-
ous fruitful discussions.

APPENDIX LINEAR STABILITY ANALYSIS

a05@geff
2 1~Vz2D̄Ps!

2#@geff2~12ws!J#1geffVx@Vx

1~vs1D̄us!J#2Vx~Vz2D̄Ps!~D̄vs2us!J,
v

ev

y
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tt.

ev
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s.
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2 22geff~12ws!J
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